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Outline
• N-body simulations show regularity 

in halo properties:
1. density profile 
2. abundance 
3. clustering

• I’ll try to give a simple way to 
understand where these come from

• Then I’ll discuss variations, e.g. what 
changes for cosmologies different 
than ΛCDM

GHalo (Stadel et al. 2009)



HALOS

Millennium-II Simulation
(Boylan-Kolchin et al. 2009)

halos are:

1. collapsed
2. self-bound
3. virialized

The basic building-blocks of 
large-scale structure:

• home to all galaxies, quasars, 
stars, etc.



Do we need a theory of halos?

Halo properties are important for a huge range of topics in 
astrophysics & cosmology,  e.g.

• sites of galaxy & star formation

• determines galaxy properties

• DM annihilation signal

So we’d like to understand where halo properties come from, 
in some simple robust way.  

see Lithwick & Dalal (2010), Dalal, Lithwick & Kuhlen (2010)

• cluster abundance

• large-scale structure

• etc...



“Via Lactea”
Diemand et al. 2006

hierarchical structure formation 
is a mess (literally!)

despite the mess, we can still understand important halo properties



building a theory of halos

• Halos come from peaks of the initial (Gaussian random) density field, 
so: properties of initial peaks ⇒ final halo properties

• so we need to know:

1. properties of initial peaks

2. mapping from peaks → halos  (i.e. collapse model)

• with this framework, we can understand MANY aspects of halos...

images from Springel et al. (2007)

start with this end with this



Halo properties

• density profiles

• statistics (abundance, clustering, etc.)



Halo Profile

“Aquarius” (Springel et al. 2008)

Slope is steep at large radii, and becomes more shallow at small r.  
The rollover is very gradual, occurring over many decades in r. 

“Universal” NFW profile: the vast majority of simulated halos behave 
this way; exceptions tend to be recent mergers or bridged halos.

The Aquarius Project: the subhalos of galactic halos 9
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Figure 4. Spherically averaged density profile of the Aq-A halo
at z = 0, at different numerical resolutions. Each of the pro-
files is plotted as a thick line for radii that are expected to be
converged according to the resolution criteria of Power et al.
(2003). These work very well for our simulation set. We continue
the measurements as thin solid lines down to 2 ε, where ε is the
Plummer-equivalent gravitational softening length in the notation
of Springel et al. (2001b). The dotted vertical lines mark the scale
2.8 ε, beyond which the gravitational force law is Newtonian. The
mass resolution changes by a factor of 1835 from the lowest to the
highest resolution simulation in this series. Excellent convergence
is achieved over the entire radial range where it is expected.
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where N(r) is the number of particles inside r, and ρ(r)
is the average enclosed density. Note that this form of the
convergence criterion is in principle also applicable to dark
matter subhalos (see below), but in this regime it has not
been empirically validated so far.

We find that there is very good agreement between the
densities and enclosed masses for all radii larger than the
convergence radius estimated in this way. The quality of
this convergence is impressively demonstrated by Figure 5,
where we show the local logarithmic slope of the density
profile, for the radial range where convergence is expected
according to the Power criterion. There are some large fluc-
tuations of the local slope in the outer parts of the halo,
caused by substructures, which are remarkably well repro-
duced at the different resolutions. In the more relaxed inner
regions, the local logarithmic slope varies smoothly with ra-
dius. In particular, it becomes gradually shallower towards
the centre, as suggested by Navarro et al. (2004). In fact,
the local slope becomes clearly shallower than −1 at the in-
nermost converged radius. This has important implications
for the structure of the central cusp which will be analyzed
in full detail in Navarro et al. (2008, in preparation). For
the rest of this paper, we focus on an analysis of the dark
matter substructures.
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Figure 5. Local logarithmic slope of the density profiles as a func-
tion of radius for the Aq-A halo simulated at different numerical
resolution. Only the radial region that should be converged ac-
cording to the criteria of Power et al. (2003) is shown. Note that
the large fluctuations in the outer parts are caused by substruc-
tures but nevertheless reproduce well between simulations. In this
regime, we expect significant halo-to-halo scatter.

3 SUBSTRUCTURE ABUNDANCE AND

SPATIAL DISTRIBUTION

In this section, we investigate the abundance of dark matter
substructures as measured by the SUBFIND algorithm. All
our substructures consist of particle groups that are gravi-
tationally self-bound and are overdense with respect to the
local background. Every simulation particle can be part only
of one subhalo, but we are able to detect substructure within
substructure (see below). We count substructures down to
a minimum of 20 bound particles.

3.1 Subhalo counts and substructure mass

fraction

In Figure 6, we show the differential abundance of subhalos
by mass (i.e. the number of subhalos per unit mass inter-
val) in our ‘A’ halo within r50, and we compare results for
simulations of the same object at different mass resolution.
For masses above ∼ 5 × 108 M", the number of subhalos is
small and large halo-to-halo scatter may be expected (see
below). However, for lower masses a smooth mass spectrum
is present that is well described by a power law over many
orders of magnitude. Multiplication by M2

sub compresses the
vertical scale drastically, so that the slope of this power-law
and deviations from it can be better studied. This is shown
in the bottom panel of Figure 6. We see that resolution
effects become noticeable as a reduction in the number of
objects at masses below a few hundred particles, but for
sufficiently well resolved subhalos, very good convergence is
reached. There is good evidence from the fully converged

c© 0000 RAS, MNRAS 000, 000–000



concentrations
cvir=rvir/r-2  measures the extent of the outer, steep portion of the 
profile.

correlates with other parameters, 
in the sense that 

•old, low mass ⇒ high cvir

• young, high mass ⇒ low cvir

←old young→

Wechsler et al. (2002)



Why?

Are mergers responsible for universal halo properties? 5

Figure 4. Density profiles for 16 haloes with particle number within r200 (N200) greater than 10,000. These 16 haloes cover two orders
of magnitude in mass. The density profiles are normalized by r2/ρcrit and the radius are normalized by r200. In each panel, the red
dotted curve is the NFW fit to the numerical measurement (black solid curve). Two vertical dotted lines show the softening length and
r200. The corresponding M200 (in unit of h−1M" ) and the concentration parameter c are listed in each panel.

firming the original result of Huss et al. (1999b). In Fig. 4,
we present density profiles for 16 haloes with mass from
3 × 1013M"/h to 4.5 × 1015M"/h. All these haloes include
more than 10, 000 particles. Here the concentration param-
eter is measured by fitting an NFW profile to the numerical
results using logarithmically spaced radial bins in the range
2ε < r < r200. The softening length ε and r200 are shown
in the plot by vertical dotted lines. We find these profiles to
follow the NFW model very well. It is also obvious that the
ρs and c have a strong mass dependence. Both parameters
increase with increasing halo mass. These mass dependences
disagree with those in a CDM universe where more massive
halos have a lower ρs and c. In Fig. 5, we display the de-
pendence of concentration parameter on halo mass for our
two halo samples. In the lower panel, we present results for
CDMRUN. The mass dependence, c ∝ M−0.12

200 , is close to
that found by Neto et al. (2007) and Macciò et al. (2007)
c ∝ M−0.11

200 . In the upper panel, we present this relation
for HDMRUN. It is interesting that the mass dependence
inverts and follows c ∝ M0.2

200: the more massive a halo, the
larger its concentration parameter.

Many previous studies have found that the structural
properties and the mass accretion histories of haloes are
closely related in a CDM universe (e.g. Navarro et al. 1996,
1997; Wechsler et al. 2002; Zhao et al. 2003). Concentration
increases with the formation time and the characteristic den-
sity ρs can be related with the mean cosmic density at the
time of formation. In Fig. 6 , we check this relation for our
HDMRUN haloes. The formation time is defined here as the
earliest time when half of the halo mass was in its main

progenitor. It is interesting that massive haloes form a bit
earlier than their low mass counterparts in this cosmology.
Combining with the M200 ∼ c relation showed in Fig. 5, we
find that the earlier forming objects do indeed have a larger
concentration parameter, in agreement with the result for a
CDM universe. This indicates that here also the inner part
is assembled during the fast early growth phase.

4.2 Kinematics

If haloes follow a universal density profile as discussed
above, and are in an equilibrium state, then the solu-
tion of Jeans equation for spherical, isotropic systems indi-
cates that their kinematic structure may also be universal.
Taylor & Navarro (2001) have found that, for dark haloes
in a CDM universe, there is a power-law relationship be-
tween “phase-space density” and radius: ρ/σ3 ≈ r−α with
α = 1.875, where phase-space density is defined as the ratio
of local matter density ρ to the cube of the local veloc-
ity dispersion σ. This phase-space density is inversely re-
lated to the local entropy density. In the semi-analytic ex-
tended secondary infall model, this nearly scale-free nature
of ρ/σ3 is a robust feature of virialized haloes in equilibrium
(Austin et al. 2005). Further investigation of halo formation
processes indicates that this scale-free feature cannot be the
result of hierarchical merging; rather it must be an outcome
of violent relaxation (Austin et al. 2005; Barnes et al. 2006).
We show results for massive haloes in our HDM and CDM
samples in Fig. 7. In order to reduce the noise, we stack the
20 most massive haloes in each case. Before the stacking,

c© 2007 RAS, MNRAS 000, 1–9

• origin of this profile is a longstanding problem.

• lots of suggestions:

‣ shape of power spectrum? 
(e.g. Nusser & Sheth 1999)

‣ substructure? 
(e.g. Dekel et al. 2003)

‣ isotropization of velocities 
(Lu et al. 2007)

‣ statistical mechanics 
e.g. maximum entropy??

• but you always get NFW!

Hot Dark Matter
Wang & White (2009)



our approach

• NFW-like profiles occur in many different contexts

• the same underlying physics (likely) occurs in these 
different cases

• instead of studying this physics in the messy 
cosmological context...

• ... we’ll focus on a simple case that we can easily 
understand.



Collapse model
we’ll examine one particular example in great detail:

collapse of a scale-free, nonspherical profile δρ∝r-γ f(θ,ϕ)

Lithwick & Dalal (2010)



Collapse model
we’ll examine one particular example in great detail:

collapse of a scale-free, nonspherical profile δρ∝r-γ f(θ,ϕ)

scale-free initial profile + scale-free gravity = self-similar solution

Compared to conventional N-body sim:

• much larger spatial dynamic range (typically ≳1010)

• much MUCH faster run-times

Lithwick & Dalal (2010)



Spherical Self-Similar Solution
(Fillmore & Goldreich 1984, Bertschinger 1985)



Nonspherical Self-Similar Solution
(Lithwick & Dalal 2010)



example: density profile

ρ

R

can we explain 
this behavior?



• Gunn & Gott (1972)

• entire model: solve

• results that I’ll use: 

1. max radius (rturnaround)

2. time of turnaround (when δ≈1)

spherical collapse model

r̈ = −GM
r2

maximum radius
(turnaround)



(outer) Density profile

rr1 r2 r3

t2

t3Suppose linear density profile has 
local slope γ, so that

δ(r,a)∝a r-γ

Turnaround occurs when δ~1, so
rta∝a 1/γ          (comoving)
rta∝a (1+γ)/γ    (proper)

Suppose (for now) that all particles 
execute circular orbits, so there is 
no shell crossing.

Background ρ∝a-3, and ata∝rtaγ/(1+γ), 
so the slope of the density is

ρ

r (proper)

〈δ〉

δc

t1

initial (linear) 
density

 (comoving)

r1 r2 r3

t1

t2

t3ρ ∝ r−α, α =
3γ

1 + γ

see Fillmore & 
Goldreich (1984)



(outer) Density profile

• initial radial density profile

r-3

The preceding argument (ρ∝d3rL/d3r) can be used to predict the 
halo profile given the initial peak profile:

➔

recall slope α ≈ 3γ/(1+γ)
see also Gunn & Ryden (1988), 

Ascasibar et al. (2004), Lu et al. (2006)

flat

steep
(why?)



 (inner) Density profile

r-3

This works for outer profile, but does not explain the inner profiles.

So far, we’ve assumed circular orbits 
with no shell crossing, but reality is 
not so simple!

See examples:
• box orbit
• loop orbit
• banana orbit
• ...

keynote:/Users/nealdalal/Documents/halos.key?id=BGSlide-3
keynote:/Users/nealdalal/Documents/halos.key?id=BGSlide-3
keynote:/Users/nealdalal/Documents/halos.key?id=BGSlide-5
keynote:/Users/nealdalal/Documents/halos.key?id=BGSlide-5


example: banana orbit

more examples:
box, loop

orbits respond to evolving potential

keynote:/Users/citauser/Documents/berkeley.key?id=BGSlide-47
keynote:/Users/citauser/Documents/berkeley.key?id=BGSlide-47
keynote:/Users/citauser/Documents/berkeley.key?id=BGSlide-48
keynote:/Users/citauser/Documents/berkeley.key?id=BGSlide-48


adiabatic contraction
• if potential changes slowly compared to orbital time, then 

orbits respond adiabatically and conserve adiabatic invariants

• for one-dimensional system, action J = ∫ v dx ~ v x ~ Φ½ x  

• example: harmonic oscillator 

Φ(x)=½ ω2x2

⇒ J ~ E/ω
- E

- J



adiabatic contraction
• in spherical systems, the radial action

Jr = ∫ vr dr ∝ (M r)1/2 is an adiabatic invariant

• our halos are not spherical, but shells are 
consistent with conserving Jr



adiabatic invariants

• the conserved adiabatic invariants may be 
predicted from the initial peak profile, using the 
spherical collapse model: 

•



• Gunn & Gott (1972)

• entire model: solve

• results that I’ll use: 

1. max radius (rturnaround)

2. time of turnaround (when δ≈1)

spherical collapse model

r̈ = −GM
r2

maximum radius
(turnaround)



adiabatic invariants

• the conserved adiabatic invariants may be 
predicted from the initial peak profile, using the 
spherical collapse model: 

• assume that ML  × rta is conserved



hooray!

• Ok: (we think) we understand the simple 
case of self-similar collapse:

➡ the important physics is adiabatic 
contraction applied to the initial peaks

• does the same physics explain the messier, 
more realistic case of CDM halos?



Via Lactea-2

• High resolution simulation of halo similar to MW

• 40 Mpc box, with over 109 particles inside 
virialized region at z=0

• profile resolved down to 10-3 of r200

• snapshots extending from z=104.3 to z=0



VL-2 comparison
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VL-2: mass profile
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success?

• this shows we can predict the final halo 
profile, given the initial peak profile

• then, if we can predict the initial profiles as 
well, then we have a complete model!

• these are peaks of Gaussian random fields:
⇒ try Gaussian statistics to predict profiles



simplest Gaussian prediction

• nicely explained in BBKS (1986)

• compute (average) peak profile using the 
probability distribution of density δ

• this is a conditional probability, since we 
know that δ = δcrit at radius rhalo

• so the average profile is 〈δ(r)| δ(rhalo)〉, which 
only depends on the matter power spectrum



VL-2 comparison
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BBKS



peak profiles

• naive Gaussian statistics (BBKS) does not match 
the actual peak profiles – why?

• the naive calculation ignores the hierarchy of 
peaks within peaks for cold dark matter

• we proposed a simple way to account for this 
hierarchy, still using simple Gaussian statistics...



peak profiles

• naive Gaussian statistics (BBKS) does not match 
the actual peak profiles -- why?

• processes during collapse (e.g. dynamical 
friction) can rearrange matter, dragging high 
density material to the center

• simple model for this: assume that the densest 
material comes from the highest subpeaks that 
are the first to collapse



schematically:

initial volume



VL-2 comparison
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BBKS



what does it mean?

Upshot: 

1. we know how to translate from initial peak 
profile to final halo profile

2. we know how to calculate the statistics of 
initial peak profiles for Gaussian random fields.

➡ We are done! (problem solved?!)



• most halos do not violently relax

some implications
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some implications

• most halos do not violently relax

• we find no reason for a ρ∝r 
-1 cusp as r→0

• instead, the gradual roll-over in slope 
continues down all the way to r=0  



broader appplications

why is this important?

1. now we know how to compute statistics

2. now we know what changes as we vary things

3. now we know what aspects of the model are 
tested by various observations...



Halo statistics



Halo mass function
•  The number of halos as a function of mass

• One of the most fundamental statistics in 
cosmology

• This (largely) controls the number of 
galaxies, clusters, etc.

• Time dependence tells us how fast objects 
grow, how often they merge, etc.



SPT

Halo mass function

ACT

DES

... and many more



halo mass function

our approach is to compute halo statistics using 

1. peak statistics, and 

2. our self-similar collapse model



• peak statistics ..... already worked out by BBKS (1986),  e.g.:

• Also: properties of the peaks:  e.g. statistics of...

peak statistics (Gaussian)

Npk(ν) ≈
(σ2

δ∇2δ/3σ2
δ )3/2

2π2
(ν3 − 3ν)e−ν2/2, ν →∞
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halo statistics
• Now, combine peak stats with our collapse model  

• for example:

see also BBKS, Bond & Myers (1996)

• Peaks are complicated, but we assume that just a few peak 
properties are important:

• radial slope γ
• triaxiality e,p

• Our self-similar collapse model allows us to compute post-collapse 
properties as a function of γ, e, p

n =
�

de dp . . .

� ∞

νc

N (ν, e, p, . . .)dν

Dalal et al. (2011) 



ΛCDM mass function

our model (black)

Warren et al. (red)
Jenkins et al. (blue)
Sheth et al. (green)}fitting

functions

Dalal et al. (2011) 

WMAP5
z=3



halo mass function
n=0
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Example: FoF dn/dM for Ωm=1, P(k)∝const.

our model (black)
Warren et al. (red)
Jenkins et al. (blue)
Sheth et al. (green)

fitting 
functions

our model

error bars =
N-body sims

Dalal et al. (2011) 



other statistics

the same model trivially predicts other important 
halo statistics, like

• clustering (e.g. 2-pt function)

• halo concentrations

• halo growth rates

• assembly bias

keynote:/Users/citauser/Documents/berkeley.key?id=BGSlide-54
keynote:/Users/citauser/Documents/berkeley.key?id=BGSlide-54
keynote:/Users/citauser/Documents/berkeley.key?id=BGSlide-56
keynote:/Users/citauser/Documents/berkeley.key?id=BGSlide-56
keynote:/Users/nealdalal/Documents/halos.key?id=BGSlide-18
keynote:/Users/nealdalal/Documents/halos.key?id=BGSlide-18
keynote:/Users/citauser/Documents/berkeley.key?id=BGSlide-55
keynote:/Users/citauser/Documents/berkeley.key?id=BGSlide-55


other applications

• using this approach, we can predict how halo properties 
change for alternative cosmologies:

1. non-gaussianity (Dalal et al. 2008a)

2. warm dark matter (Villaescusa-Navarro & Dalal 2010)

3. modified gravity (in prep.)



1. Non-Gaussianity

• Primordial NG is a powerful probe of early 
universe physics

• Essentially every early universe model (e.g. 
inflation, cyclic, etc...) all predict some NG

• the detailed form of the NG contains lots of info 
on the physics of the early universe

• so this is a HUGE industry in cosmology



Non-gaussianity
∆b(k) = 2bLfNLδcrit

3Ωm

2ag(a)T (k)r2
H

k2

allows constraints |fNL| ~1, approaching guaranteed detection regime!



2. Warm dark matter
• for Cold DM, we expect high central densities of DM in halos

• observationally, some dwarfs may have cores instead of cusps

cusp/core
problem?



WDM: tiny cores
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Villaescusa-Navarro & Dalal (2010)

core size is typically 
< 10-3 of halo size



Summary (1)

• dark matter halos are fundamental to modern 
cosmology

• we have presented a new, simple way to 
understand the properties of DM halos

• internal structure of halos may be understood 
by applying adiabatic contraction to the 
profiles of initial peaks



Summary (2)

• halo statistics (abundance, clustering, etc.) may 
be understood from the statistics of the 
progenitor peaks

• our framework allows us to understand what 
happens to halos in different cosmologies, e.g.

- primordial non-gaussianity

- warm dark matter, modified gravity, etc.



future

• Dynamics of triaxial halos

- orbital families, resonance/chaos

• Properties of substructure from sub-peaks

• Generalization to include hydro / dissipation

- building towards understanding how baryons 
affect dark matter

• Beyond the SM

- modified gravity theories (f(R), DGP, ...)



Summary

• we can understand many properties of 
halos by considering peak properties

• in this talk I focused on basic properties like 
profile, mass function, etc., but the peaks 
viewpoint also helps illuminate more 
detailed properties (e.g. assembly bias)

• the same basic formalism can be used to 
see what changes for different cosmologies, 
e.g. with nongaussianity or modified 
gravity...


